Genetic Architecture of Variation in the Lateral Line Sensory System of Threespine Sticklebacks

نویسندگان

  • Abigail R. Wark
  • Margaret G. Mills
  • Lam-Ha Dang
  • Yingguang Frank Chan
  • Felicity C. Jones
  • Shannon D. Brady
  • Devin M. Absher
  • Jane Grimwood
  • Jeremy Schmutz
  • Richard M. Myers
  • David M. Kingsley
  • Catherine L. Peichel
چکیده

Vertebrate sensory systems have evolved remarkable diversity, but little is known about the underlying genetic mechanisms. The lateral line sensory system of aquatic vertebrates is a promising model for genetic investigations of sensory evolution because there is extensive variation within and between species, and this variation is easily quantified. In the present study, we compare the lateral line sensory system of threespine sticklebacks (Gasterosteus aculeatus) from an ancestral marine and a derived benthic lake population. We show that lab-raised individuals from these populations display differences in sensory neuromast number, neuromast patterning, and groove morphology. Using genetic linkage mapping, we identify regions of the genome that influence different aspects of lateral line morphology. Distinct loci independently affect neuromast number on different body regions, suggesting that a modular genetic structure underlies the evolution of peripheral receptor number in this sensory system. Pleiotropy and/or tight linkage are also important, as we identify a region on linkage group 21 that affects multiple aspects of lateral line morphology. Finally, we detect epistasis between a locus on linkage group 4 and a locus on linkage group 21; interactions between these loci contribute to variation in neuromast pattern. Our results reveal a complex genetic architecture underlying the evolution of the stickleback lateral line sensory system. This study further uncovers a genetic relationship between sensory morphology and non-neural traits (bony lateral plates), creating an opportunity to investigate morphological constraints on sensory evolution in a vertebrate model system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lateral line diversity among ecologically divergent threespine stickleback populations.

The lateral line is a mechanoreceptive sensory system that allows fish to sense objects and motion in their local environment. Variation in lateral line morphology may allow fish in different habitats to differentially sense and respond to salient cues. Threespine sticklebacks (Gasterosteus aculeatus) occupy a diverse range of aquatic habitats; we therefore hypothesized that populations within ...

متن کامل

The Genetic Architecture of Parallel Armor Plate Reduction in Threespine Sticklebacks

How many genetic changes control the evolution of new traits in natural populations? Are the same genetic changes seen in cases of parallel evolution? Despite long-standing interest in these questions, they have been difficult to address, particularly in vertebrates. We have analyzed the genetic basis of natural variation in three different aspects of the skeletal armor of threespine sticklebac...

متن کامل

Variation in Lateral Plate Quality in Threespine Stickleback from Fresh, Brackish and Marine Water: A Micro-Computed Tomography Study

INTRODUCTION It is important to understand the drivers leading to adaptive phenotypic diversity within and among species. The threespine stickleback (Gasterosteus aculeatus) has become a model system for investigating the genetic and phenotypic responses during repeated colonization of fresh waters from the original marine habitat. During the freshwater colonization process there has been a rec...

متن کامل

Genetic Mapping of Natural Variation in Schooling Tendency in the Threespine Stickleback

Although there is a heritable basis for many animal behaviors, the genetic architecture of behavioral variation in natural populations remains mostly unknown, particularly in vertebrates. We sought to identify the genetic basis for social affiliation in two populations of threespine sticklebacks (Gasterosteus aculeatus) that differ in their propensity to school. Marine sticklebacks from Japan s...

متن کامل

Genetic and Neural Modularity Underlie the Evolution of Schooling Behavior in Threespine Sticklebacks

Although descriptions of striking diversity in animal behavior are plentiful, little is known about the mechanisms by which behaviors change and evolve between groups. To fully understand behavioral evolution, it will be necessary to identify the genetic mechanisms that mediate behavioral change in a natural context. Genetic analysis of behavior can also reveal associations between behavior and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012